mous “repair nerves,” which can expand the blood vessels, connect with pain and compression nerves. These nerves are grouped into many chains, called channels in Chinese medicine (Tsai 1995).

- **Other hypotheses:**
 - Antrobus proposes a mental interpretation of external stimuli, integrating them as part of a dream (Cartwright 1993).
 - Dreams allow the repressed parts of the mind to be satisfied through fantasy (Vedfelt 2002).
 - Freud suggested that bad dreams let the brain learn to gain control over emotions resulting from distressing experiences (Cartwright 1993).
 - Jung suggested that dreams might compensate for one-sided attitudes held in waking consciousness (Jung 1934, 1974, 2002).
 - Ferenczi (1927) proposes that dreams express that which is not being said outright.
 - According to Kramer (1993), dreams regulate moods.
 - Hartmann (1995) proposes that dreams function like psychotherapy, allowing the dreamer to integrate thoughts that may be dissociated during waking life.
 - In their fulfillment theory of dreaming, Griffen and Tyrell (2003, 2007) suggest that dreaming metaphorically completes patterns of emotional expectation in the autonomic nervous system and lowers stress levels in mammals.

Positron emission tomography (PET) studies have shown two areas of the brain to be highly activated during REM sleep: the limbic and the paralimbic system. The limbic system is a set of brain structures that include hippocampus, amygdala, anterior thalamic nuclei, septum, limbic cortex, and fornix. It supports a variety of functions including emotional behavior. The paralimbic system consists of the following structures: the pyriform, the entorhinal and parahippocampal cortex on the medial surface of the temporal lobe, and the cingulated cortex. These structures are involved in emotion processing, goal seeking, and motivation. The right hypothalamus, which integrates the sensory-perceptual, emotional, and cognitive functions of the mind with the biology of the body, is also active during REM sleep.

Meanwhile, there is a loss of functional connection between the frontal cortex and the posterior perceptual areas, resulting in a lack of reality testing, hence different types of brain communications. In other words, dream images are experienced, biologically and emotionally as reality.

In his book *Dream Language* (2005), R.J. Hoss updates the earlier activation synthesis model of the dreaming brain by Hobson (Fig. 1.2). Table 1.3 presents a compilation of various sources of recent research on the state of the brain in dreaming sleep.

![Fig. 1.2 Brain activity during dreaming: limbic and paralimbic systems (Hobson and McCarley in Hoss, Dream Language, 2005); see Table 1.3 for details.](image)
Sleep Disorders

Sleep disorders are broadly classified as follows.

Table 1.3 Brain activity during dreaming (Hobson 2002, Hoss 2005, Pannier 2006)

<table>
<thead>
<tr>
<th>Brain structure</th>
<th>Functions</th>
<th>Effect during dreaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor cortex (inactive)</td>
<td>Motor functions</td>
<td>Muscular atonia: body paralysis</td>
</tr>
<tr>
<td>Dorsolateral, prefrontal, parietal cortex (inactive)</td>
<td>Rational thought, planning, choice, decision,</td>
<td>Irrational action, loss of will and control,</td>
</tr>
<tr>
<td></td>
<td>working memory, will, control of inappropriate</td>
<td>strange imagery accepted as normal, believing</td>
</tr>
<tr>
<td></td>
<td>behavior</td>
<td>one is awake, forgetfulness upon waking</td>
</tr>
<tr>
<td>Sensory cortex (inactive)</td>
<td>Sensory input</td>
<td>None or very little sensory input</td>
</tr>
<tr>
<td>Precunius, lateral and inferior prefrontal cortex</td>
<td>Processing of visual memory, recall</td>
<td>Situations producing a dream are different from</td>
</tr>
<tr>
<td>(inactive)</td>
<td></td>
<td>waking situations</td>
</tr>
<tr>
<td>Posterior cingulate (inactive)</td>
<td>Working and episodic memory</td>
<td>Sudden scene changes seem normal, no reflective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>awareness</td>
</tr>
<tr>
<td>Left frontal and temporal areas (inactive)</td>
<td>Language association, speech, naming of things</td>
<td>Dream language becomes metaphoric</td>
</tr>
<tr>
<td>Left inferior parietal cortex (inactive)</td>
<td>Distinction between self and others</td>
<td>Perception of self as the other</td>
</tr>
<tr>
<td>Pontine stem and thalamus</td>
<td>Initiation of REM sleep, motor pattern generator, arousal and attention</td>
<td>Consciousness, eye movement, movement in dreams, believing one is awake</td>
</tr>
<tr>
<td>Right hypothalamus and basal forebrain</td>
<td>Autonomic and instinctual functions, flight or</td>
<td>Themes of fear, escape, emotion, reward and</td>
</tr>
<tr>
<td></td>
<td>fight, reward</td>
<td>motivation</td>
</tr>
<tr>
<td>Limbic and paralimbic: amygdala, hippocampus</td>
<td>Emotion and image association, memory processing, emotion processing, goal-directed behavior, social processing</td>
<td>Emotional memories stimulate the dream, themes with emotional features, goal orientation; focus on anomalies of self-image and others</td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>Initiation of programmed motor activity</td>
<td>Perception of movement in the dream</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>Fine-tuning of movement, motion perception (vestibular sensations)</td>
<td>Sense of movement and body sense</td>
</tr>
<tr>
<td>Visual cortex (temporo-occipital)</td>
<td>Integration of visual perceptions, image recognition (face, color, shape...)</td>
<td>Visual dream construction from personal associations and emotions</td>
</tr>
<tr>
<td>Right inferior parietal cortex</td>
<td>Spatial and self-perception, orientation,</td>
<td>Dream space as referenced to self, symbolic</td>
</tr>
<tr>
<td></td>
<td>movement, spatial imagery, metaphoric language, pictographs</td>
<td>imagery, metaphoric language</td>
</tr>
<tr>
<td>Anterior cingulate</td>
<td>Emotional awareness, error detection, decision-making, appropriate action</td>
<td>Coherent dream scenarios in relation to the dreamer’s concerns, suggestion of future action</td>
</tr>
</tbody>
</table>

Dyssomnias are a broad classification of sleeping disorders, including primary disorders of initiating or maintaining sleep, or of excessive sleepiness. They are characterized by a disturbance in the amount, quality, or timing of sleep. There are over
30 kinds of dyssomnia, which are subdivided into intrinsic, extrinsic, and disturbances of the circadian rhythm. They include:

- **Primary insomnia**: a chronic difficulty falling asleep and/or maintaining sleep with no apparent causative factor (see “Insomnia” below)
- **Narcolepsy**: excessive daytime sleepiness, often culminating in the person falling asleep spontaneously but unwillingly at inappropriate times
- **Sleep apnea**: a sleep disorder that is characterized by pauses in breathing during sleep
- **Obstructive sleep apnea**: obstruction of the airway during sleep, causing a lack of sufficient deep sleep, and often accompanied by snoring. Central sleep apnea is less common.
- **Hypopnea syndrome**: abnormally shallow breathing or a slow respiratory rate while sleeping
- **Restless legs syndrome**: which manifests as an irresistible urge to move the legs. Restless legs syndrome sufferers often also have periodic limb movement disorder.
- **Periodic limb movement disorder**, also known as nocturnal myoclonus: sudden involuntary movements of the arms and/or legs during sleep
- **Chronobiological disorders**, mainly circadian rhythm sleep disorders: the inability to awaken and fall asleep at socially acceptable times, although the person has no difficulty maintaining sleep
- **Situational circadian rhythm sleep disorders**: shiftwork sleep disorder and jet lag
- **Sleep paralysis**: characterized by temporary paralysis of the body shortly before or after sleep. It may be accompanied by visual, auditory, or tactile hallucinations. Sleep paralysis is often regarded as part of narcolepsy and is not considered a disorder unless it is severe.
- **Parasomnia**: events that disrupt sleep, such as sleep-walking, sleep-talking, night terrors, bruxism, bed-wetting, or sleep sex (see “Parasomnia” below)

Parasomnia

Parasomnia refers to a category of sleep disorders that involve abnormal and unnatural movements, behaviors, emotions, perceptions, and dreams that occur while falling asleep, while sleeping, between sleep stages, or during arousal from sleep. Most parasomnias constitute partial arousal during the transition between wakefulness and non-REM sleep, or between wakefulness and REM sleep.

Parasomnias include the following:

- **REM sleep behavior disorder**: The normal paralysis occurring during REM sleep is absent or incomplete, allowing the person to act out dreams that are vivid, intense, or violent.
- **Night terror, or pavor nocturnus**: This involves an abrupt awakening from sleep with behavior consistent with terror.
- **Sleep-walking, or somnambulism**: Person engages, without conscious knowledge, in activities that are normally associated with wakefulness, such as walking, eating, or dressing.
- **Sleep sex, or sexsomnia**: Non-REM arousal parasomnia (sexual behavior in sleep) is considered to be a distinct variant of sleep-walking and causes the person to engage in sexual acts.
- **Sleep-talking, or somniloquy**: Person talks aloud in their sleep. Sleep-talking can range from simple sounds to long speeches.
- **Bruxism**: This is the involuntary grinding or clenching of the teeth while sleeping.
- **Nocturia**: This comprises a frequent need to get up and go to the bathroom to urinate at night. Nocturia differs from enuresis, or bed-wetting, in which the person does not awaken, but the bladder empties anyway.
- **Exploding head syndrome**: Sufferers awaken during the night hearing loud noises.

Secondary to Medical or Psychiatric Conditions

This category includes:

- Psychoses, such as schizophrenia and bipolar disorders
- Mood disorders, such as depression or anxiety
- Panic attacks
- Alcoholism

Examples of other conditions that disturb sleep are physical pains (lumbar or neck), environmental noises, incontinence, or endocrine causes such as those observed during hormonal changes in the premenstruum or menopausal transitions.

The most common sleep disorders include primary insomnia, sleep apneas, narcolepsy, periodic limb movement disorder, restless legs syndrome, and the circadian rhythm sleep disorders. The sec-

<table>
<thead>
<tr>
<th>International Classification of Sleep Disorders (American Academy of Sleep Medicine 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment sleep disorder</td>
</tr>
<tr>
<td>Advanced sleep-phase syndrome</td>
</tr>
<tr>
<td>Alcohol-dependent sleep disorder</td>
</tr>
<tr>
<td>Alcoholism</td>
</tr>
<tr>
<td>Anxiety disorders</td>
</tr>
<tr>
<td>Benign neonatal sleep myoclonus syndrome</td>
</tr>
<tr>
<td>Central sleep apnea syndrome</td>
</tr>
<tr>
<td>Cerebral degenerative disorders</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>Circadian rhythm sleep disorder</td>
</tr>
<tr>
<td>Confusional arousals</td>
</tr>
<tr>
<td>Congenital central hypoventilation syndrome</td>
</tr>
<tr>
<td>Delayed sleep-phase syndrome</td>
</tr>
<tr>
<td>Dementia Parkinsonism</td>
</tr>
<tr>
<td>Electrical status epilepticus of sleep</td>
</tr>
<tr>
<td>Environmental sleep disorder</td>
</tr>
<tr>
<td>Extrinsic sleep disorder</td>
</tr>
<tr>
<td>Fatal familial insomnia</td>
</tr>
<tr>
<td>Food allergy insomnia</td>
</tr>
<tr>
<td>Fragmentary myoclonus</td>
</tr>
<tr>
<td>Hypnotic-dependent sleep disorder</td>
</tr>
<tr>
<td>Idiopathic hypersomnia</td>
</tr>
<tr>
<td>Idiopathic insomnia</td>
</tr>
<tr>
<td>Impaired sleep-related penile erections</td>
</tr>
<tr>
<td>Inadequate sleep hygiene</td>
</tr>
<tr>
<td>Infant sleep apnea</td>
</tr>
<tr>
<td>Insomnia is the most common of the sleep complaints, affecting 30%–40% of the general adult population and about 15%–25% of children. Primary insomnia is not caused by any physical, psychiatric, or environmental condition. Secondary insomnia is caused by other intrinsic or extrinsic conditions, medications, or substance intake. Insomnia may be acute, short-term (lasting up to a few weeks), or chronic (when a person suffers from insomnia for at least three nights a week for over a month, including periodic insomnia).</td>
</tr>
</tbody>
</table>
Causes of Insomnia

Causes of acute insomnia include:
- Significant life stress (job loss or change, the death of a loved one, divorce, moving house)
- Illness
- Emotional or physical discomfort
- Environmental factors such as noise, light, or extreme temperatures (hot or cold) that interfere with sleep
- Some medications (e.g., those used to treat colds, allergies, depression, high blood pressure, and asthma)
- Interference with the normal sleep schedule (e.g., jet lag or switching from a day to a night shift)

Causes of chronic insomnia include:
- Depression and/or anxiety
- Chronic stress
- Pain or discomfort at night

An important factor in insomnia is wrong sleep hygiene, such as irregular sleeping habits, the effect of stimulating food, drink, and drugs, stimulating activities before sleep, and an uncomfortable sleeping environment.

Stimulants and depressants include:
- Caffeine, which acts as an antagonist at the adenosine receptors and slows the action of the hormones in the brain that cause somnolence. Caffeine sensitivity varies from person to person, but its stimulating effects may last for up to 12 hours. It may cause a rapid reduction in alertness as it wears off.
- Energy drinks, which function in much the same way as caffeine. Some individuals experience sleep disruption with certain vitamins, such as vitamin C, or even with mint tea.
- Drugs containing amphetamines
- Cocaine
- Alcohol, which initially causes sleepiness and is therefore commonly used to enhance sleep. However, as it has a rebound effect later in the night, it will seriously disrupt sleep.
- Other depressants such as barbiturates, which act in a similar way to alcohol.

Treatment of Insomnia

Treatment strategies for sleep disorders fall into four categories:
- Behavioral/psychotherapeutic treatments
- Rehabilitation/management
- Medication
- Other somatic treatments

Hypnotic benzodiazepines are widely used as they represent the least toxicity. The use of barbiturates has greatly diminished. Other classes of drug, such as anxiolytics or neuroleptics, are also used to treat insomnia. Unfortunately, many of the medical drug therapies have inconvenient side-effects, such as habituation and the patient becoming dependent on the artificially induced sleep.

Several articles have documented the therapeutic difficulties and side-effects of the drugs that are currently being prescribed for insomnia (Goldenberg 1984, Roy-Byrne and Hommer 1988, Copinschi et al. 1990, Gaillard 1990, Mignot 1991, Buclin et al. 1992).

It is important to stress that sleep induced by hypnotics is not physiological:
- Barbiturates and antidepressant drugs cause reduced REM sleep.
- Benzodiazepines and opiates reduce Stage 4 (N3) sleep, the increase in total sleep time being due to an increase in Stage 2 (N2) sleep.

Moreover, some individuals have experienced what are known as rebound phenomena when they have tried to stop their hypnotic medication. The following symptoms have been reported (Buclin et al. 1992, Copinschi et al. 1990, Genton 1990, Hanin and Marks 1988, Mignot 1991, Taj 2002):
- Nightmares
- Increase in heart rate and apnea with hypnotic drugs
- Amnesia and attention deficit with some benzodiazepines
- Dependence and tolerance with most products
- Toxicity with certain barbiturates
To understand the pathologies of sleep, we must first explore the significance of sleep in the context of Chinese physiology.

Historically, the earliest Chinese discussions about sleep related the sleeping process to the movements of *wei qi* (defensive energy), orchestrated by the extraordinary vessels, the *yin* and *yang qiao mai* (motility vessels). During the Tang dynasty (7th–8th century CE), Chinese physiology became primarily humoral, that is, pathologies were seen through the concept of the five humors, or substances. Thus, sleep was associated primarily with *shen* (spirit) and its relation to *xue* (blood). It was not until the Song dynasty (10th–13th century CE) that the *zang fu* (organ) system was adopted as the basis of Chinese medical physiology. The *zang fu* and their disharmonies today constitute the foundation of modern Traditional Chinese Medicine (TCM).

Besides the humoral and organic theories, the movements of energy, which are responsible for the sleeping process, involve the channel system, in particular the extraordinary vessels.

It is thus obvious that, in order to be able to understand sleep phenomena, we must consider sleep in the context of *yin* and *yang*, *qi*, *xue*, and *shen* theories, the *zang fu* organ models, and the *jing luo* channel systems.

In TCM, the notion of normal sleep is reflected in the terminology used, that is, *an mien* = peaceful sleep:

- *an* 安 quiet, peaceful, calm (as in calming the *shen*)
- *mien* 眠 sleep (made up of the character for the eye and the character for community)

An mien signifies quiet communion with the self, probably through dreams (inner vision).

Sleep, being a regularly recurring condition of rest for the body and the mind, could be redefined as somatic stillness (*zang fu* and *jin*-sinews) and mental quietness (*shen*).

Yin/Yang

According to basic Chinese premises, daytime and activity are considered to be *yang*, whereas nighttime and sleep are considered to be *yin*. *Yang* grows during the morning, reaching its apex at noon, and declines in the afternoon. *Yin* grows in the afternoon, reaches its maximum at midnight, and declines in the early morning (*Fig. 2.1*).

In humans, the rhythmic balance between sleep and activity depends primarily on the “internal structure,” the microcosm, and secondarily on external influences, the macrocosm. In a state of health, there is a harmonious balance between...
yang qi, which expands during the day, and yin qi, which abounds at night.

Sleep time, which represents the major part of an infant’s 24-hour cycle, progressively diminishes to about 6–7 hours in an adult. Internal factors balance the length and depth of sleep with the length and intensity of daytime activity. This balance can be viewed as being dependent on two parameters: time and space (Fig. 2.2). In relation to sleep, space may be defined as the depth or intensity of sleep.

Internal “synchronizers,” primarily the extraordinary vessels, control these parameters, which in turn define our basic and inherent rhythms. Four of these vessels are not only intimately connected to the internal systems (zang fu), but are also permanently tuned into external variations, such as day and night and the climate (Fig. 2.3). In the absence of a lack of harmony between these synchronizers and other zang fu pathology, the body adapts perfectly to external variations and demands, while keeping its individual characteristics. This capacity to adapt to change defines the individual’s state of health.

Insomnia is a yang condition, which in the great majority of cases is due to a disturbance of yin. This yin disturbance is either due to the inability of yin to achieve a proper depth of sleep, which is the case in superficial or dream-disturbed sleep, or due to a shortened sleep time, as witnessed in problems of falling asleep, and early or frequent waking. The type of insomnia is, therefore, defined by whether it concerns the length or the depth of sleep, or both.

Sleep and the Substances:

Wei Qi–Xue–Shen

Movements of Wei Qi: Physical Relaxation

The Chinese classical text **Ling Shu** (Spiritual Pivot) describes the circulation of wei qi during the day and the night: “Wei qi circulates on the surface of the body, predominantly along the sinew channels, 25 times during the day, penetrates the deeper layers of the body at the area of the ankle in the evening, circulates in the zang fu through 25 cycles during the night, following the ke (control) cycle of the five movements, and emerges at the corner of the eye, most probably at jing ming, BL-1, enabling the eyes to open” (Ling Shu, French translation 1995) (Fig. 2.4).

The text cited here obviously relates to the cycle of sleeping and waking and to the movements of wei qi, and is strongly reminiscent of the role of the yin qiao mai and its synchronization with the yang qiao mai in managing the nycthemeral sleep cycle. The French school, in particular, Nguyen Van Nghi, proposes that the point at which the wei qi leaves the surface to penetrate the deeper parts of the body is zhao hai, KI-6.

Wei qi, which is mostly concentrated in the jing jin (sinew channels) during the day, maintains muscle tone and mobility: the process of wei qi moving from the surface to circulate internally allows the muscles to relax. This process is considered the first stage of sleep.
Wei qi is also responsible for surface body temperature. It is interesting to note that modern research has shown that body temperature also presents a 25-hour cycle, and there appears to be some interaction between sleep and body temperature rhythms (Takahashi, 2010). Falling asleep and deep sleep occur during the lowest body temperature dip, whereas waking occurs during the ascending phase of the curve.

Master Jeffrey C. Yuen (lecture 2009, personal communication) defines wei qi and this process more precisely. According to Master Yuen, wei qi, being part of yang qi, is rooted in the yuan qi (source qi) and needs to return to the source, the kidneys. If the wei qi cannot fully complete its return to the source—the kidneys—the patient will experience fear in the form of nightmares, and in the case of infants, even convulsions, called jing feng, or fright wind.

Master Yuen further says that wei qi also penetrates deeper during the sleep state to protect us against gui (ghost) influences. This kind of gui commonly manifests as gui zha (ghost oppression).

Bai Zheng Fu (Ode of One Hundred Patterns) gives indications for:
- PC-5 jian shi for gui xie (ghost evil)
- SP-1 yin bai for gui zha
- ST-45 li dui and SP-1 yin bai for sleeping or dreaming with a heavy sensation on the chest
- LU-3 tian fu for gui yan (ghost talk)

The passage of wei qi to the interior is a consequence of the relaxation of the external jin, the muscles and the tendons. This movement of wei qi mobilizes blood toward the interior, helping it to return to the liver.

This would explain the action of points such as qu quan LR-8, yang ling quan GB-34, and yang jiao GB-35 to relax the sinews and help to guide blood to the interior, as indicated for sleep pathologies involving restlessness, for example restless legs syndrome (RLS).

Wei qi circulates in the interior during sleep, while ying (nourishing) qi circulates on the exterior. Closing the eyes, which is controlled by jing ming BL-1, corresponds to the deactivation of wei qi. Hence, the extra point yin tang is indicated for insomnia, since it helps to relax the eyes and the nose, and also supports breathing.

Jing ming BL-1 is connected to the stomach and large intestine channels (ying xiang LI-20 → cheng qi ST-1 → jing ming BL-1), and also to the small intestine channel (via quan liao SI-18, which continues to ting gong SI-19). Relaxes the eyes helps to relax the nose, as manifested in the deeper breathing occurring when falling asleep, and a blockage in the nose can affect sleeping. Jing ming BL-1 is helpful in sleep apnea and also helps to close the ears. A blockage of qi at the ear can cause a high-pitched ringing in the ears or cause the person to hear their own heartbeat. Jing ming BL-1, as a confluent point of yang qiao mai, can be regulated by shen mai BL-62. Supplementing BL-62 helps the patient to wake up; reducing it helps the patient to sleep.

The closing of the eyes is the first manifestation of the wei qi moving inward. The second area the wei qi has to pass through is the chest. The chest needs to relax and to loosen up in order to permit the wei qi to further descend to the zang fu. In the absence of this relaxation, a person may wake up during the night feeling hot and sweating.

This shows the importance of relaxing the xiong (chest) and ge (diaphragm), which affects the zong qi (chest [gathering] qi), with points such as ge shu BL-17 and zong hui TB-7:
- BL-17 is used for night sweating, tidal fevers, steaming bone syndrome, and menopausal syndrome (as it cools the blood).
- Hui zong TB-7 helps move wei qi downward toward the abdomen (and is used when the patient wakes in the night to eat).
- **Jian shi** PC-5 can also be used for sleeping disorders associated with eating late, causing stomach yin xu vacuity, with empty heat disturbing sleep. It can also be used for eating disorders (food compensation).
- **Yin bai** SP-1 is used for excessive dreaming, restlessness, and fright wind (nightmares).
- **Yin bai** SP-1 + **li dui** ST-45 is supplemented for excessive sleeping, reduced for insomnia.
- From the chest, **wei qi** moves to the abdomen and down to **ming men** GV-4 with the liver as the zhu (chief governor or emissary), given its position between the heart shen and kidney jing.

In the Daoist tradition, sleep is a preparation for death, and restless sleep forebodes a restless death:

“We die in the same manner that we sleep.”

Master Yuen further elaborates on the movement of **wei qi** inward: under the control of the lung, the liver releases the ying outward, causing the hun (ethereal soul) to move out and wander (rapid eye movement [REM] sleep). The wandering of the hun can be seen as the liver releasing its internal wind, that is, the emotions. Hun includes aspects of memory, the record-keeper, but also insights into the future, as the liver is associated with time (that is, qi men LR-14).

Wei qi, being the result of the conversion of ying qi (nourishing qi), should also move back to the ying level. This process involves the secondary or collateral channels, particularly the luo (connecting channels) (Fig. 2.5).

As described by Master Yuen, the return of **wei qi** to the ying level involves the luo mai, in particular the pericardium luo, which moves to the chest, and the kidney luo, which moves to the lower abdomen. Three other luo help bring back the **wei qi** to the yuan, the spleen great luo and the luo of the ren mai (conception vessel) and du mai (governing vessel).

As the luo are heavily involved with the blood and shen, they act as a buffer system and manage our emotional responses to the world. The involvement of the luo during the night gives us the opportunity to review the psycho-emotional impacts of our daily life in the form of dreams manifesting as challenges, prompting us to find solutions or resolutions. In the absence of any emotional issues to process, **wei qi** moves back to the primary channels. Sleep is then restful and one wakes up rested and rejuvenated.

Shen: Mental Relaxation

Sleep is defined as a regularly recurring condition of rest for the body and mind. Body rest results from the relaxation of the jin (sinews) and the movements of **wei qi**. Mental relaxation is in the domain of the shen.

Shen

In the Chinese classics, shen has been defined as spirit or spirits, gods, creative instance, organizing spirit or principle, subtle influx received from heaven, mysterious cause (unfathomable metaphysical principle), pure action, transforming force, and creative force that enhances growth, elaborates, and completes the transformation of an individual and his or her consciousness of the world. Shen is a collective term for the emotional, mental, and spiritual aspects of human existence; hence, it is involved in learning, intelligence, memory, the ability to differentiate emotions, and coherence of thoughts, association, and alertness (jing shen).

On the one hand, shen is responsible for our perception of reality. In Confucianism, the cultivation of the mind (that is, the thoughts) changes our perception of reality. On the other hand, shen represents our spiritual evolution. Shen is responsible for how our life mandate (ming), stored in the kidneys, will be manifested and carried out.

In the Daoist tradition, the heart channel points represent the nine steps or stages in life. Master
Yuen calls these points the nine steps towards redemption, recovery, and sovereignty:

HT-1: ji quan	Highest Spring	Endless possibilities
HT-2: qing ling	Green-Blue Spirit	A young soul
HT-3: shao hai	Lesser Sea	Ocean of life
HT-4: ling dao	Spirit Path	Path for the soul
HT-5: tong li	Connecting Li	Life challenges
HT-6: ying xi	Yin Cleft	Theme of life (mid-life crisis)
HT-7: shen men	Spirit Gate	Entering the heart
HT-8: shao fu	Lesser Mansion	Less residence (attachment)
HT-9: shao chong	Lesser Surge	Less blueprint (less curriculum, less karma)

Hence shen, being responsible for our spiritual evolution, will manifest through the offices of the hun in the form of dreams, enacting the challenges of our chosen life curriculum (predetermined life mandate). One can process these challenges by practicing lucid or conscious dreaming (see Chapter 5). When difficulties are encountered in this processing, the dream is experienced as a nightmare.

On the other hand, shen also represents the sum total of our emotions and is responsible for their manifestation. Therefore, all emotions will affect the shen and disrupt the heart, causing sleep problems:

- Anger will cause heart fire.
- Joy or excitement and sadness affect heart qi.
- Pensiveness affects heart blood.
- Fear and fright (shock) in adults affects heart–kidney communication.

Mental activity is the combined interaction of consciousness, qi (energy/function), and the nao (brain). It can, therefore, be summarized as the manifestation of the “Three Treasures”:

Shen—spirit	Resides in the heart	→ Coordination, coherence
Qi—energy	Produced by the spleen	→ Function
Jing—essence	Stored in the kidneys	→ Brain matter

Consciousness and wakefulness are defined by the activity of the shen. Awareness is the result of the harmonious activity of the zang fu as expressed by shen ming (clarity of the spirit).

Mental activity may be summarized as:

- Shen receiving the sensory input (consciousness, alertness)
- Processing (digestion) of the information by the yi (intellect, thought/mindfulness)
- Storing of the information by the zhi (will) (Fig. 2.6)

All information is understood, properly analyzed, and stored accordingly in this manner.

Yi 意

Yi represents the thinking process, concentration in thinking and focusing, providing boundaries, and giving meaning to experiences. Yi functions through memory, analysis, synthesis, thinking, classification, concentration, focusing, symbolism, abstract thinking, conceptualization, ideas, learning, integration of sensory, mental and emotional input, and physical awareness.

All sensory information processed by yi will, therefore, be broken down, as in the digestive process, into separate components, to be understood...