Inhalt

	Vorwort	V	2.1.7	Verhaltensweisen und Evolution	17
			2.1.8	Biochemie und Molekulargenetik	17
1	Grundlagen des Lebens	1	2.2	Zoologische Systematik Mechanismen der	18
1.1	Entstehung der belebten	1	2.3.1 2.3.2	Evolution	19 19
1.2	Materie	1	2.3.3	fristiger Formenwandel Faktoren der Hominiden- entwicklung	21 22
1.2.1 1.2.2	der belebten Materie Lipide und Lipoide (Fette)	2 2 4	Wiede	erholungsfragen	23
1.2.3 1.2.4	1.2.3 Kohlenhydrate (Zucker)		3	Die Zelle – Struktu und Funktion	
			3.1	Polare und apolare Zellen	24
2	Evolution und Biodiversität	13	3.2	Aufbau der Zellmembran.	25
			3.3	Das Cytoplasma	26
2.1	2.1.1 Rezente Organismen		3.4	Lysosomen, Peroxisomen und Vesikel	27
2.1.1		13 13	3.5	Das Cytoskelett	27
2.1.3	Evolutionsforschung und	10	3.6	Molekulare Motoren	31
	Selektionstheorie Biogeographie	13 15	3.7	Exo- und Endocytose	32
2.1.5	Paläontologie	16	3.8	Zell-Zell-Verbindungen	34
2.1.6	Ontogenese und Phylogenese	17	3.9	Extrazelluläre Matrix	36
			3.10	Der Zellkern	37

VIII	Inhalt		

3.11	Ribosomen und Polysomen	37		Polymeraseketten- reaktion (PCR)	62
3.12	Endoplasmatisches Reticulum	38		Genomanalyse und Genbanken Genetische Modifika-	62
3.13	Translation und Weg der Proteinsynthese	39	4.3	tion von Organismen Fortpflanzung	63 63
3.14	Golgi-Apparat	41	4.3.1	Ungeschlechtliche	
3.15 Wied 6	Mitochondrienerholungsfragen	41 44	4.3.2	Fortpflanzung	64 65 65
4	Genetik und Fortpflanzung	45	Wiede	Generationswechsel Besamung und Befruchtungerholungsfragen	66 66 67
4.1 4.1.1 4.1.2 4.1.3	Allgemeine Genetik Erbsubstanz Chromosomen Vererbung (Mendel-	45 45 46	5	Tierstämme und Parasitologie	68
4.1.4	Gesetze)	49 49 50 52	5.1 5.1.1 49 50 52 54 54 55 56 57 58	Protozoa (Einzeller) Flagellata (Geißeltierchen) Trichomonadida Leishmania Trypanosoma Giardia. Rhizopoda (Wurzelfüßer) Amöben Sporozoa (Sporentierchen) Haemosporidia Plasmodien Coccidia Toxoplasma Eimeria Cryptosporidium Sarcocystis Piroplasmida Theileria Babesia	68 69 70 71 72 73
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	Molekulare Genetik Struktur der DNA Replikation der DNA Der genetische Code Transkription Genregulation Mutationen Reverse Transkription und Retroviren Gentechnologie Klonierung von Gensequenzen mit Expressionsvektoren	54 55 56 57 58 59 60 61			74 75 75 77 77 78 80 80 80 80 81

5.1.4	Microspora	82		Pararthropoda 120
5.1.5	Myxozoa	82		- Amandibulata
5.1.6	Ciliata (Wimpertierchen).	82		(Mandibellose) 121
	rholungsfragen			Chelicerata (Spinnen-
zu Kap	0.5.1	85		artige)
5.2	Metazoa (Mehrzeller)	86		■ Mandibulata 126
5.2.1	Porifera (Schwämme)	92		■ Crustacea (Krebse) 126
5.2.2	Coelenterata (Hohltiere) .	94		Myriapoda (Tausend-
3.2.2	Cnidaria	94		füßer) 130
		9 4 97		■ Insecta (Hexapoda) 130
XA7: - 4 -	Ctenophora	97		Arthropoden als
	rholungsfragen	0.5		Krankheitsüberträger . 137
	0.5.2-5.2.2	97	Wiede	rholungsfragen
5.2.3	Plathelminthes (Platt-			5.2.6
	würmer)	98	5.2.7	Mollusca (Weichtiere) 139
	Turbellaria (Strudel-		3.2.7	Gastropoda
	würmer)	100		(Schnecken) 140
	Trematoda (Saug-			
	würmer)	100		Bivalvia (Muscheln) 141
	■ Monogenea			Cephalopoda
	■ Digenea			(Kopffüßer) 142
	Cestoda (Band-		5.2.8	Tentaculata und
	würmer)	104		Hemichordata144
	■ Taeniidae		5.2.9	Echinodermata (Stachel-
	■ Dipyliidae			häuter) 144
	■ Mesocestoididae			rholungsfragen
	■ Echinococcus		zu Kap	5.2.7–5.2.9
			5.2.10	Chordata (Chordatiere) 147
	■ Multiceps			Tunicata (Mantel-
XA7: - 4 -	■ Diphyllobothriidae	108		tiere) 147
	rholungsfragen	110		Acrania (Schädellose) . 147
	0.5.2.3	110		Agnatha (Kieferlose) 149
5.2.4	Nemathelminthes			Chondrichthyes
	'	111		(Knorpelfische) 150
	Nematodes (Rund-			Osteichthyes
	oder Fadenwürmer)	111		(Knochenfische) 152
	Filarien (Faden-			■ Actinopterygii
	würmer)	115		
	Acanthocephala			(Strahlenflosser) 155
	(Kratzer)	115		Sarcopterygii (Fleisch-
5.2.5	Annelida (Ringel-			flosser)
	würmer)	116		Marine Tiere und
Wiede	rholungsfragen	110		ihre Gifte 155
zu Kap. 5.2.4 – 5.2.5				Amphibia (Lurche) 156
5.2.6	Arthropoda (Glieder-	115		Die Entwicklung des
J.2.U	füßer)	110		amniotischen Eies 159
	101301 /	113		Reptilia (Kriechtiere) 161

			_
Wiede	Aves (Vögel)	7	Ökologie und Umwelt 199
zu Kap	5.5.2.10	7.1	Einleitung 199
6	Organe und Organsysteme 178	7.2 7.2.1 7.2.2 7.2.3	Ökophysiologie (Autökologie)
6.1	Integument und Verknöcherungen der Haut 178	7.3 7.3.1	Populationsökologie (Demökologie) 202 Mutualismus, Kommen-
6.2	Skelett und Bewegungs- apparat 181	7.3.2	salismus, Symbiose 203 Parasitismus 204
6.2.1	Bildung des Stütz- gewebes	7.3.3 7.3.4	Zoonosen
6.2.2 6.2.3	Achsenskelett	7.4	Ökologie der Lebens- gemeinschaften
6.2.4	Schädel		(Synökologie) 206
6.3	Gehirn und Nervensystem 186	7.4.1 7.4.2	Lebensgemeinschaften 206 Naturschutz und Arten- schutz 206
6.4	Herz- und Kreislauf- System 191	7.4.3 Wied	Tierschutz 207 erholungsfragen 208
6.5	Atmungsorgane und Gaswechsel 193		
6.6	Exkretions- und Fortpflanzungsorgane 194		Sachregister 209
6.6.1 6.6.2 Wiede	Exkretionsorgane		

Grundlagen des Lebens

1.1 Entstehung der belebten Materie

Die Entstehung der lebenden Materie aus anorganischen Stoffen ist eine wahrscheinliche, aber letztendlich nicht erwiesene Hypothese. Verschiedene experimentelle Befunde sprechen für eine "chemische Evolution". d.h. für die Entstehung von organischen Molekülen aus anorganischen Baustoffen unter den besonderen Bedingungen der Uratmosphäre. Diese abiotische Entwicklung des Lebens wurde in verschiedenen Experimenten, unter anderem von Miller (1953). nachvollzogen. Ihm gelang es, aus einem Gasgemisch von Methan, Kohlendioxid. Ammoniak. Wasserstoff und Wasserdampf unter Einwirkung von elektrischen Entladungen eine Reihe von organischen Verbindungen wie Aminosäuren, verschiedene Zucker-Moleküle und vor allem auch Nucleotide, die Grundbausteine der Nucleinsäuren, herzustellen. Der entscheidende nächste Schritt, wie aus diesen einfachen organischen Molekülen in einer Art Selbstorganisation lebendige Materie entstand, ist allerdings bisher experimentell weniger überzeugend bewiesen und beruht vorwiegend auf verschiedenen Modellvorstellungen. Eines dieser Modelle besagt, dass sich einfache organische Moleküle, wie z.B. Aminosäu-

ren, zunächst zu Peptiden und Proteinen verbunden und entwickelt haben. die sich dann in einer Reaktionskette zusammenschlossen und gegenseitig katalytisch beeinflusst haben. Auf diese Weise käme ein konstanter Reaktionsprozess zustande, der zur Bildung immer neuer Proteine führen würde. Ähnliche Vorstellungen gibt es zur Entstehung und zur zyklischen Produktion von Nucleinsäuren, die sich durch Anlagerung zu Ketten und komplementären Doppelsträngen entwickelt haben könnten. Würden sich nun Nucleinsäure-Reaktionsketten mit den Protein-Reaktionsketten verknüpfen, so könnte eine gegenseitige katalytische und steuernde Beeinflussung entstanden sein, die letztlich zur Selbstorganisation der biologischen Materie geführt haben könnte. Voraussetzung für diese Reaktionsabläufe ist allerdings eine lokale Kompartimentierung, die diese Reaktionszyklen vom Außenmedium abschließt und so zu den ersten primitiven zellulären Lebensformen, den **Protobionten**, geführt haben könnte.

Diese Protobionten hatten bereits die charakteristischen Eigenschaften der lebenden Materie, d.h. einen **Stoffwechsel** zur Aufrechterhaltung ihrer Funktion und die **Vererbung** ihrer Eigenschaften durch Teilung und Vermehrung. Dabei haben vermutlich Mutationen zu einer Entstehung von verschiedenen Protobionten-Typen geführt, aus denen sich durch eine evolutionäre Auslese die Varianten mit den überlegenen Eigenschaften durchgesetzt haben. Letztendlich führte diese Entwicklung dann vermutlich über verschiedene Übergangsformen (Eubionten) zur Bildung der einfachsten Prokarvoten-Zelle. aus der sich dann höher entwickelte Prokaryoten bildeten. Solche ganz einfachen Prokaryoten-Zellen sind noch heute erhalten. Man bezeichnet sie als Mycoplasmen. Sie besitzen bereits eine Zellmembran, Cytoplasma mit Ribosomen und DNA als Erbsubstanz, die allerdings bedeutend weniger Proteine codiert als bei den meisten Bakterien. Viele dieser einfachen Zwischenformen besaßen vermutlich nur RNA als Erbsubstanz und hatten einen anaeroben Stoffwechsel, der

Die eukarvotischen Zellen entstanden vermutlich vor ca. 1.5 Milliarden Jahren. Sie zeichnen sich durch eine intrazelluläre Kompartimentierung aus, d.h. einzelne Bereiche der Zelle sind durch intrazelluläre Membranen abgeteilt und bilden spezielle Funktionsräume. Diese einzelnen Bereiche werden Organellen genannt. Wie sie im Einzelnen entstanden sind, ist letztendlich nicht klar, aber es gibt verschiedene Hypothesen. Für die Entstehung der Mitochondrien und der Peroxisomen geht man von der Endosymbiontenhypothese aus, die besagt, dass diese einst prokaryotische Organismen waren, die im Laufe der Phylogenese von den Eukaryoten phagocytotisch aufgenommen wurden. Sie wurden nicht verdaut, sondern gingen eine Symbiose zum bei-

nicht auf Sauerstoff angewiesen war.

derseitigen Nutzen ein. Für andere Zellorganellen, besonders für diejenigen mit einer einfachen Membran wie z.B. das Endoplasmatische Reticulum oder der Golgi-Apparat, geht man von der Zellkompartimentierungs-Hypothese aus, wonach sich die einzelnen Kompartimente durch allmähliche intrazelluläre Differenzierung gebildet haben. Jedenfalls ist die Kompartimentierung der Erbsubstanz in einem durch eine Doppelmembran abgeschlossenen Zellkern das Hauptmerkmal der Eukaryoten-Zelle.

Die heutigen einzelligen Organismen lassen sich also in die einfacher aufgebauten **Prokaryoten** und die höher entwickelten **Eukaryoten** einteilen. Zu den Prokaryoten gehören die Blaualgen und die Bakterien, während zu den Eukaryoten alle **Protozoa** (Einzeller) und alle **Metazoa** (Mehrzeller) gehören. Demnach gehören alle pflanzlichen Organismen, die Pilze und alle tierischen Organismen zu den Eukaryoten. Näheres zur Abgrenzung der Prokaryoten und Eukaryoten findet sich in Kapitel 3.

1.2 Die wichtigsten Baustoffe der belebten Materie

1.2.1 Lipide und Lipoide (Fette)

Lipide (Fette) und Lipoide (fettähnliche Substanzen) sind Moleküle, die in Wasser unlöslich (**hydrophob**), in organischen Lösungsmitteln dagegen sehr gut löslich (**lipophil**) sind. Im Organismus sind sie als Energielieferan-